

### 4.4 Classical DSB-SC Modulators

To produce the modulated signal $A_{c} \cos \left(2 \pi f_{c} t\right) m(t)$, we may use the following methods which generate the modulated signal along with other signals which can be eliminated by a bandpass filter restricting frequency contents to around $f_{c}$.
4.55. Multiplier Modulators [6, p 184] or Product Modulator [3, p 180]: Here modulation is achieved directly by multiplying $m(t)$ by $\cos \left(2 \pi f_{c} t\right)$ using an analog multiplier whose output is proportional to the product of two input signals.

- Such a multiplier may be obtained from
(a) a variable-gain amplifier in which the gain parameter (such as the the $\beta$ of a transistor) is controlled by one of the signals, say, $m(t)$. When the signal $\cos \left(2 \pi f_{c} t\right)$ is applied at the input of this amplifier, the output is then proportional to $m(t) \cos \left(2 \pi f_{c} t\right)$.
(b) two logarithmic and an antilogarithmic amplifiers with outputs proportional to the log and antilog of their inputs, respectively.
- Key equation:

$$
A \times B=e^{(\ln A+\ln B)}
$$

4.56. When it is easier to build a squarer than a multiplier, we may use a square modulator shown in Figure 25.


Note that

$$
\begin{aligned}
d(t) & =\left(m(t)+c \cos \left(2 \pi f_{c} t\right)\right)^{2} \\
& =m^{2}(t)+2 c m(t) \cos \left(2 \pi f_{c} t\right)+c^{2} \cos ^{2}\left(2 \pi f_{c} t\right) \\
& =m^{2}(t)+2 c m(t) \cos \left(2 \pi f_{c} t\right)+\frac{c^{2}}{2}+\frac{c^{2}}{2} \cos \left(2 \pi\left(2 f_{c}\right) t\right)
\end{aligned}
$$



Using a band-pass filter (BPF) whose frequency response is

$$
H_{B P}(f)= \begin{cases}g, & \left|f-f_{c}\right| \leq B  \tag{59}\\ g, & \left|f-\left(-f_{c}\right)\right| \leq B \\ 0, & \text { otherwise }\end{cases}
$$

we can produce $2 \operatorname{cgm}(t) \cos \left(2 \pi f_{c} t\right)$ at the output of the BPF. In particular, choosing the gain $g$ to be $(c \sqrt{2})^{-1}$, we get $m(t) \times \sqrt{2} \cos \left(2 \pi f_{c} t\right)$.

- Alternative, can use $\left(m(t)+c \cos \left(\frac{\omega_{c}}{2} t\right)\right)^{3}$.
4.57. Another conceptually nice way to produce a signal of the form $A_{c} m(t) \cos \left(2 \pi f_{c} t\right)$ is to
(1) multiply $m(t)$ by "any" periodic and even signal $r(t)$ whose period is $T_{c}=\frac{1}{f_{c}}$
and then
(2) pass the result though a BPF used in (59).


To see how this works, recall that because $r(t)$ is an even function, we know that

$$
r(t)=c_{0}+\sum_{k=1}^{\infty} a_{k} \cos \left(2 \pi\left(k f_{c}\right) t\right) \text { for some } c_{0}, a_{1}, a_{2}, \ldots
$$

Therefore,

$$
m(t) r(t)=c_{0} m(t)+\sum_{k=1}^{\infty} a_{k} m(t) \cos \left(2 \pi\left(k f_{c}\right) t\right)
$$




See also [5, p 157]. In general, for this scheme to work, we need

- $a_{1} \neq 0$ period of $r$;
- $f_{c}>2 B$ (to prevent overlapping).

Note that if $r(t)$ is not even, then by (50c), the resulting modulated signal will have the form $x(t)=a_{1} m(t) \cos \left(2 \pi f_{c} t+\phi_{1}\right)$.
4.58. Switching modulator: An important example of a periodic and even function $r(t)$ is the square pulse train considered in Example 4.48. Recall that multiplying this $r(t)$ to a signal $m(t)$ is equivalent to switching $m(t)$ on and off periodically.


$$
r(t)=\frac{1}{2}+\frac{2}{\pi} \cos \left(2 \pi f_{c} t\right)-\frac{2}{3 \pi} \cos \left(2 \pi\left(3 f_{\mathrm{c}}\right) t\right)+\frac{2}{5 \pi} \cos \left(2 \pi\left(5 f_{\mathrm{c}}\right) t\right)+\cdots
$$

$m(t) \times r(t)=\frac{1}{2} m(t)+\frac{2}{\pi} m(t) \cos \left(2 \pi f_{\mathrm{c}} t\right)-\frac{2}{3 \pi} m(t) \cos \left(2 \pi\left(3 f_{\mathrm{c}}\right) t\right)+\frac{2}{5 \pi} m(t) \cos \left(2 \pi\left(5 f_{\mathrm{c}}\right) t\right)+\ldots$

4.59. Switching Demodulator: The switching technique can alko be


We have seen that, for DSB-SC modem, the key equation is given by (41). When switching demodulator is used, the key equation is

$$
\operatorname{LPFA}_{c} m(t) \cos \left(2 \pi f_{c} t\right) \times \overbrace{1\left[\cos \left(2 \pi f_{c} t\right) \geq 0\right]}^{r(t)}\}=g_{\pi}^{\mathcal{A}_{c}} m(t)
$$

[5, p 162].

$$
\begin{aligned}
& \begin{array}{l}
r(t)=\frac{1}{2}+\frac{2}{\pi} \cos \left(2 \pi f_{c} t\right)-\frac{2}{3 \pi} \cos \left(2 \pi\left(3 f_{c}\right) t\right)+\frac{2}{5 \pi} \cos \left(2 \pi\left(5 f_{c}\right) t\right)+\cdots \\
y(t) r(t)=\frac{1}{2} y(t)+\frac{2}{\pi} y(t) \cos \left(2 \pi f_{c} t\right)-\frac{2}{3 \pi} y(t) \cos \left(2 \pi\left(3 f_{c}\right) t\right)+\frac{2}{5 \pi} y(t) \cos \left(2 \pi\left(5 f_{c}\right) t\right)+\cdots
\end{array} \\
& =\frac{1}{2} A_{c} m(t) \cos \left(2 \pi f_{c} t\right) \quad=\frac{1}{2} A_{c} m(t) \cos \left(2 \pi f_{c} t\right) \\
& +\frac{2}{\pi} A_{c} m(t) \cos \left(2 \pi f_{c} t\right) \cos \left(2 \pi f_{c} t\right) \\
& -\frac{2}{3 \pi} A_{c} m(t) \cos \left(2 \pi f_{c} t\right) \cos \left(2 \pi\left(3 f_{c}\right) t\right) \\
& +\frac{1}{\pi} A_{c} m(t)\left(1+\cos \left(2 \pi\left(2 f_{c}\right) t\right)\right) \\
& -\frac{1}{3 \pi} A_{c} m(t)\left(\cos \left(2 \pi\left(2 f_{c}\right) t\right)+\cos \left(2 \pi\left(4 f_{c}\right) t\right)\right) \\
& +\frac{2}{5 \pi} A_{c} m(t) \cos \left(2 \pi f_{c} t\right) \cos \left(2 \pi\left(5 f_{c}\right) t\right)+\cdots \quad+\frac{1}{5 \pi} A_{c} m(t)\left(\cos \left(2 \pi\left(4 f_{c}\right) t\right)+\cos \left(2 \pi\left(6 f_{c}\right) t\right)\right)+\cdots \\
& =\frac{1}{2} A_{c} m(t) \cos \left(2 \pi f_{c} t\right) \\
& +\frac{1}{\pi} A_{c} m(t)+\frac{1}{\pi} A_{c} m(t) \cos \left(2 \pi\left(2 f_{c}\right) t\right) \\
& -\frac{1}{3 \pi} A_{c} m(t) \cos \left(2 \pi\left(2 f_{c}\right) t\right)-\frac{1}{3 \pi} A_{c} m(t) \cos \left(2 \pi\left(4 f_{c}\right) t\right) \\
& +\frac{1}{5 \pi} A_{c} m(t) \cos \left(2 \pi\left(4 f_{c}\right) t\right)+\frac{1}{5 \pi} A_{c} m(t) \cos \left(2 \pi\left(6 f_{c}\right) t\right)+\cdots
\end{aligned}
$$

Note that this technique still requires the switching to be in sync with the incoming cosine as in the basic DSB-SC.

